Comparing Possibly Misspecified Forecasts
Andrew Patton
Journal of Business & Economic Statistics, 2020, vol. 38, issue 4, 796-809
Abstract:
Recent work has emphasized the importance of evaluating estimates of a statistical functional (such as a conditional mean, quantile, or distribution) using a loss function that is consistent for the functional of interest, of which there is an infinite number. If forecasters all use correctly specified models free from estimation error, and if the information sets of competing forecasters are nested, then the ranking induced by a single consistent loss function is sufficient for the ranking by any consistent loss function. This article shows, via analytical results and realistic simulation-based analyses, that the presence of misspecified models, parameter estimation error, or nonnested information sets, leads generally to sensitivity to the choice of (consistent) loss function. Thus, rather than merely specifying the target functional, which narrows the set of relevant loss functions only to the class of loss functions consistent for that functional, forecast consumers or survey designers should specify the single specific loss function that will be used to evaluate forecasts. An application to survey forecasts of U.S. inflation illustrates the results.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1585256 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:4:p:796-809
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1585256
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().