Asymptotically Uniform Tests After Consistent Model Selection in the Linear Regression Model
Adam McCloskey
Journal of Business & Economic Statistics, 2020, vol. 38, issue 4, 810-825
Abstract:
This article specializes the critical value (CV) methods that are based upon (refinements of) Bonferroni bounds, introduced by McCloskey to a problem of inference after consistent model selection in a general linear regression model. The post-selection problem is formulated to mimic common empirical practice and is applicable to both cross-sectional and time series contexts. We provide algorithms for constructing the CVs in this setting and establish uniform asymptotic size results for the resulting tests. The practical implementation of the CVs is illustrated in an empirical application to the effect of classroom size on test scores.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1592754 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:4:p:810-825
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1592754
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().