Bayesian Forecasting of Many Count-Valued Time Series
Lindsay R. Berry and
Mike West
Journal of Business & Economic Statistics, 2020, vol. 38, issue 4, 872-887
Abstract:
We develop and exemplify application of new classes of dynamic models for time series of nonnegative counts. Our novel univariate models combine dynamic generalized linear models for binary and conditionally Poisson time series, with dynamic random effects for over-dispersion. These models estimate dynamic regression coefficients in both binary and nonzero count components. Sequential Bayesian analysis allows fast, parallel analysis of sets of decoupled time series. New multivariate models then enable information sharing in contexts when data at a more highly aggregated level provide more incisive inferences on shared patterns such as trends and seasonality. A novel multiscale approach—one new example of the concept of decouple/recouple in time series—enables information sharing across series. This incorporates cross-series linkages while insulating parallel estimation of univariate models, and hence enables scalability in the number of series. The major motivating context is supermarket sales forecasting. Detailed examples drawn from a case study in multistep forecasting of sales of a number of related items showcase forecasting of multiple series, with discussion of forecast accuracy metrics, comparisons with existing methods, and broader questions of probabilistic forecast assessment.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1604372 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:4:p:872-887
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1604372
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().