EconPapers    
Economics at your fingertips  
 

Regression Analysis with Individual-Specific Patterns of Missing Covariates

Huazhen Lin, Wei Liu and Wei Lan

Journal of Business & Economic Statistics, 2021, vol. 39, issue 1, 179-188

Abstract: It is increasingly common to collect data from heterogeneous sources in practice. Two major challenges complicate the statistical analysis of such data. First, only a small proportion of units have complete information across all sources. Second, the missing data patterns vary across individuals. Our motivating online-loan data have 93% missing covariates where the missing pattern is individual-specific. The existing regression analysis with missing covariates either are inefficient or require additional modeling assumptions on the covariates. We propose a simple yet efficient iterative least squares estimator of the regression coefficient for the data with individual-specific missing patterns. Our method has several desirable features. First, it does not require any modeling assumptions on the covariates. Second, the imputation of the missing covariates involves feasible one-dimensional nonparametric regressions, and can maximally use the information across units and the relationship among the covariates. Third, the iterative least squares estimate is both computationally and statistically efficient. We study the asymptotic properties of our estimator and apply it to the motivating online-loan data. Supplementary materials for this article are available online. KEY WORDS: High missing rate; Individual-specific missing; Iterative least squares; Missing covariates.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1635486 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:1:p:179-188

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2019.1635486

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:39:y:2021:i:1:p:179-188