Sharp Bounds on Functionals of the Joint Distribution in the Analysis of Treatment Effects
Thomas M. Russell
Journal of Business & Economic Statistics, 2021, vol. 39, issue 2, 532-546
Abstract:
This article proposes an identification and estimation method that allows researchers to bound continuous functionals of the joint distribution of potential outcomes from the literature on treatment effects. The focus is on a model where no restrictions are imposed on treatment selection. The method can sharply bound interesting parameters when analytical bounds are difficult to derive, can be used in settings in which instruments are available, and can easily accommodate additional model constraints. However, computational considerations for the method are found to be important and are discussed in detail. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1684300 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:2:p:532-546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1684300
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().