Dynamic Two Stage Modeling for Category-Level and Brand-Level Purchases Using Potential Outcome Approach With Bayes Inference
Kei Miyazaki,
Takahiro Hoshino and
Ulf Böckenholt
Journal of Business & Economic Statistics, 2021, vol. 39, issue 3, 622-635
Abstract:
We propose an econometric two-stage model for category-level purchase and brand-level purchase that allows for simultaneous brand purchases in the analysis of scanner panel data. The proposed model formulation is consistent with the traditional theory of consumer behavior. We conduct Bayesian estimation with the Markov chain Monte Carlo algorithm for our proposed model. The simulation studies show that previously proposed related models can cause severe bias in predicting future brand choices, while the proposed method can effectively predict them. Additionally in a marketing application, the proposed method can examine brand switching behaviors that existing methods cannot. Moreover, we show that the prediction accuracy of the proposed method is higher than that of existing methods.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1702047 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:3:p:622-635
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1702047
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().