Semiparametric Estimation in Continuous-Time: Asymptotics for Integrated Volatility Functionals with Small and Large Bandwidths
Xiye Yang
Journal of Business & Economic Statistics, 2021, vol. 39, issue 3, 793-806
Abstract:
This article studies the estimation of integrated volatility functionals, which is a semiparametric two-step estimation problem in the nonstationary continuous-time setting. We generalize the asymptotic normality results of Jacod and Rosenbaum to a wider range of bandwidths. Moreover, we employ matrix calculus to obtain a new analytical bias correction and variance estimation method. The proposed method gives more succinct expressions than the element-by-element analytical method of the above cited article. In addition, it has a computational advantage over the jackknife/simulation-based method proposed by Li, Liu, and Xiu. Comprehensive simulation studies demonstrate that our method has good finite sample performance for a variety of volatility functionals, including quadraticity, determinant, continuous beta, and eigenvalues.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1733583 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:3:p:793-806
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1733583
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().