Threshold Regression With a Threshold Boundary
Ping Yu and
Xiaodong Fan
Journal of Business & Economic Statistics, 2021, vol. 39, issue 4, 953-971
Abstract:
This article studies computation, estimation, inference, and testing for linearity in threshold regression with a threshold boundary. We first put forward a new algorithm to ease the computation of the threshold boundary, and develop the asymptotics for the least squares estimator in both the fixed-threshold-effect framework and the small-threshold-effect framework. We also show that the inverting-likelihood-ratio method is not suitable to construct confidence sets for the threshold parameters, while the nonparametric posterior interval is still applicable. We then propose a new score-type test to test for the existence of threshold effects. Comparing with the usual Wald-type test, it is computationally less intensive, and its critical values are easier to obtain by the simulation method. Simulation studies corroborate the theoretical results. We finally conduct two empirical applications in labor economics to illustrate the nonconstancy of thresholds.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1740712 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:39:y:2021:i:4:p:953-971
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1740712
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().