EconPapers    
Economics at your fingertips  
 

Autoregressive Model With Spatial Dependence and Missing Data

Jing Zhou, Jin Liu, Feifei Wang and Hansheng Wang

Journal of Business & Economic Statistics, 2022, vol. 40, issue 1, 28-34

Abstract: We study herein an autoregressive model with spatially correlated error terms and missing data. A logistic regression model with completely observed covariates is used to model the missingness mechanism. An autoregressive model is used to accommodate time series dependence, and a spatial error model is used to capture spatial dependence. To estimate the model, a weighted least squares estimator is developed for the temporal component, and a weighted maximum likelihood estimator is developed for the spatial component. The asymptotic properties for both estimators are investigated. The finite sample performance is assessed through extensive simulation studies. A real data example about Beijing’s PM2.5 level data is illustrated.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1766471 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:1:p:28-34

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2020.1766471

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:28-34