Autoregressive Model With Spatial Dependence and Missing Data
Jing Zhou,
Jin Liu,
Feifei Wang and
Hansheng Wang
Journal of Business & Economic Statistics, 2022, vol. 40, issue 1, 28-34
Abstract:
We study herein an autoregressive model with spatially correlated error terms and missing data. A logistic regression model with completely observed covariates is used to model the missingness mechanism. An autoregressive model is used to accommodate time series dependence, and a spatial error model is used to capture spatial dependence. To estimate the model, a weighted least squares estimator is developed for the temporal component, and a weighted maximum likelihood estimator is developed for the spatial component. The asymptotic properties for both estimators are investigated. The finite sample performance is assessed through extensive simulation studies. A real data example about Beijing’s PM2.5 level data is illustrated.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1766471 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:1:p:28-34
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1766471
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().