EconPapers    
Economics at your fingertips  
 

A New Approach to Dating the Reference Cycle

Maximo Camacho, María Dolores Gadea and Ana Gómez-Loscos

Journal of Business & Economic Statistics, 2022, vol. 40, issue 1, 66-81

Abstract: Abstract–This article proposes a new approach to the analysis of the reference cycle turning points, defined on the basis of the specific turning points of a broad set of coincident economic indicators. Each individual pair of specific peaks and troughs from these indicators is viewed as a realization of a mixture of an unspecified number of separate bivariate Gaussian distributions whose different means are the reference turning points. These dates break the sample into separate reference cycle phases, whose shifts are modeled by a hidden Markov chain. The transition probability matrix is constrained so that the specification is equivalent to a multiple change-point model. Bayesian estimation of finite Markov mixture modeling techniques is suggested to estimate the model. Several Monte Carlo experiments are used to show the accuracy of the model to date reference cycles that suffer from short phases, uncertain turning points, small samples, and asymmetric cycles. In the empirical section, we show the high performance of our approach to identifying the US reference cycle, with little difference from the timing of the turning point dates established by the NBER. In a pseudo real-time analysis, we also show the good performance of this methodology in terms of accuracy and speed of detection of turning point dates.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1773834 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: A new approach to dating the reference cycle (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:1:p:66-81

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2020.1773834

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:66-81