High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure
Yuan Ke,
Heng Lian and
Wenyang Zhang
Journal of Business & Economic Statistics, 2022, vol. 40, issue 1, 96-110
Abstract:
High-dimensional covariance matrices appear in many disciplines. Much literature has devoted to the research in high-dimensional constant covariance matrices. However, constant covariance matrices are not sufficient in applications, for example, in portfolio allocation, dynamic covariance matrices would be more appropriate. As argued in this article, there are two difficulties in the introduction of dynamic structures into covariance matrices: (1) simply assuming each entry of a covariance matrix is a function of time to introduce the dynamic needed would not work; (2) there is a risk of having too many unknowns to estimate due to the high dimensionality. In this article, we propose a dynamic structure embedded with a homogeneous structure. We will demonstrate the proposed dynamic structure makes more sense in applications and avoids, in the meantime, too many unknown parameters/functions to estimate, due to the embedded homogeneous structure. An estimation procedure is also proposed to estimate the proposed high-dimensional dynamic covariance matrices, and asymptotic properties are established to justify the proposed estimation procedure. Intensive simulation studies show the proposed estimation procedure works very well when the sample size is finite. Finally, we apply the proposed high-dimensional dynamic covariance matrices to portfolio allocation. It is interesting to see the resulting portfolio yields much better returns than some commonly used ones.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1779079 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:1:p:96-110
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1779079
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().