EconPapers    
Economics at your fingertips  
 

A Simple Asymptotically F-Distributed Portmanteau Test for Diagnostic Checking of Time Series Models With Uncorrelated Innovations

Xuexin Wang and Yixiao Sun

Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 505-521

Abstract: We propose a simple asymptotically F-distributed portmanteau test for diagnostically checking whether the innovations in a parametric time series model are uncorrelated while allowing them to exhibit higher-order dependence of unknown forms. A transform of sample residual autocovariances removing the influence of parameter estimation uncertainty makes the test simple. Further, by employing the orthonormal series variance estimator, a special sample autocovariances estimator that is asymptotically invariant to parameter estimation uncertainty, we show that the proposed test statistic is asymptotically F-distributed under fixed-smoothing asymptotics. The asymptotic F-theory accounts for the estimation error of the variance estimator that the asymptotic chi-squared theory ignores. Moreover, an extensive Monte Carlo study demonstrates that the F-test has more accurate finite sample size than existing tests with virtually no power loss. An application to S&P 500 returns illustrates the merits of the proposed methodology.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1832505 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:505-521

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2020.1832505

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:505-521