Prediction of Extremal Expectile Based on Regression Models With Heteroscedastic Extremes
Wen Xu,
Yanxi Hou and
Deyuan Li
Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 522-536
Abstract:
Expectile recently receives much attention for its coherence as a tail risk measure. Estimation of conditional expectile at extremal tails is of great interest in quantitative risk management. Regression analysis is a convenient and useful way to quantify the conditional effect of some predictors or risk factors on an interesting response variable. However, when it comes to the estimation of extremal conditional expectile, the traditional inference methods may suffer from considerable variation due to a lack of sufficient samples on tail regions, which makes the prediction inaccurate. In this article, we study the estimation of extremal conditional expectile based on quantile regression and expectile regression models. We propose three methods to make extrapolation based on a second-order condition for a framework of the so-called conditionally heteroscedastic and unconditionally homoscedastic extremes. In addition, we establish the asymptotic properties of the proposed methods and show their empirical behaviors through simulation studies. Finally, data analysis is conducted to illustrate the applications of the proposed methods in real problems.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1833890 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:522-536
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1833890
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().