Dynamic Discrete Mixtures for High-Frequency Prices
Leopoldo Catania,
Roberto Di Mari and
Paolo Santucci de Magistris
Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 559-577
Abstract:
The tick structure of the financial markets entails discreteness of stock price changes. Based on this empirical evidence, we develop a multivariate model for discrete price changes featuring a mechanism to account for the large share of zero returns at high frequency. We assume that the observed price changes are independent conditional on the realization of two hidden Markov chains determining the dynamics and the distribution of the multivariate time series at hand. We study the properties of the model, which is a dynamic mixture of zero-inflated Skellam distributions. We develop an expectation-maximization algorithm with closed-form M-step that allows us to estimate the model by maximum likelihood. In the empirical application, we study the joint distribution of the price changes of a number of assets traded on NYSE. Particular focus is dedicated to the assessment of the quality of univariate and multivariate density forecasts, and of the precision of the predictions of moments like volatility and correlations. Finally, we look at the predictability of price staleness and its determinants in relation to the trading activity on the financial markets.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1840994 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:559-577
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1840994
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().