Instrument Validity Tests With Causal Forests
Helmut Farbmacher,
Raphael Guber and
Sven Klaassen
Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 605-614
Abstract:
Assumptions that are sufficient to identify local average treatment effects (LATEs) generate necessary conditions that allow instrument validity to be refuted. The degree to which instrument validity is violated, however, probably varies across subpopulations. In this article, we use causal forests to search and test for such local violations of the LATE assumptions in a data-driven way. Unlike previous instrument validity tests, our procedure is able to detect local violations. We evaluate the performance of our procedure in simulations and apply it in two different settings: parental preferences for mixed-sex composition of children and the Vietnam draft lottery.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1847122 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:605-614
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1847122
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().