Adaptive Testing for Cointegration With Nonstationary Volatility
H. Peter Boswijk and
Yang Zu
Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 744-755
Abstract:
This article develops a class of adaptive cointegration tests for multivariate time series with nonstationary volatility. Persistent changes in the innovation variance matrix of a vector autoregressive model lead to size distortions in conventional cointegration tests, which may be resolved using the wild bootstrap, as shown in recent work by Cavaliere, Rahbek, and Taylor. We show that it also leads to the possibility of constructing tests with higher power, by taking the time-varying volatilities and correlations into account in the formulation of the likelihood function and the resulting likelihood ratio test statistic. We find that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that nonparametric volatility matrix estimation does not lead to a loss of asymptotic local power relative to the case where the volatilities are observed. The asymptotic null distribution of the test is nonstandard and depends on the volatility process; we show that various bootstrap implementations may be used to conduct asymptotically valid inference. Monte Carlo simulations show that the resulting test has good size properties, and higher power than existing tests. Empirical analyses of the U.S. term structure of interest rates and purchasing power parity illustrate the applicability of the tests.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2020.1867558 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:744-755
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2020.1867558
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().