Locally Stationary Quantile Regression for Inflation and Interest Rates
Zhuying Xu,
Seonjin Kim and
Zhibiao Zhao
Journal of Business & Economic Statistics, 2022, vol. 40, issue 2, 838-851
Abstract:
Motivated by the potential time-varying and quantile-specific relation between inflation and interest rates, we propose a locally stationary quantile regression approach to model the inflation and interest rates relation. Large sample theory for estimation and inference of quantile-varying and time-varying coefficients are established. In empirical analysis of inflation and interest rates relation, it is found that the estimated functional coefficients vary with time in a complicated manner. Furthermore, the relation is quantile-specific: not only do the selected orders differ for different quantiles, but also the coefficients corresponding to different quantiles can display completely different patterns.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1874389 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:2:p:838-851
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1874389
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().