High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions
Xin Chen,
Jia Zhang and
Wang Zhou
Journal of Business & Economic Statistics, 2022, vol. 40, issue 3, 1204-1215
Abstract:
Sliced inverse regression (SIR) is the most widely used sufficient dimension reduction method due to its simplicity, generality and computational efficiency. However, when the distribution of covariates deviates from multivariate normal distribution, the estimation efficiency of SIR gets rather low, and the SIR estimator may be inconsistent and misleading, especially in the high-dimensional setting. In this article, we propose a robust alternative to SIR—called elliptical sliced inverse regression (ESIR), to analysis high-dimensional, elliptically distributed data. There are wide applications of elliptically distributed data, especially in finance and economics where the distribution of the data is often heavy-tailed. To tackle the heavy-tailed elliptically distributed covariates, we novelly use the multivariate Kendall’s tau matrix in a framework of generalized eigenvalue problem in sufficient dimension reduction. Methodologically, we present a practical algorithm for our method. Theoretically, we investigate the asymptotic behavior of the ESIR estimator under the high-dimensional setting. Extensive simulation results show ESIR significantly improves the estimation efficiency in heavy-tailed scenarios, compared with other robust SIR methods. Analysis of the Istanbul stock exchange dataset also demonstrates the effectiveness of our proposed method. Moreover, ESIR can be easily extended to other sufficient dimension reduction methods and applied to nonelliptical heavy-tailed distributions.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1910041 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:3:p:1204-1215
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1910041
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().