Realized Quantiles*
Timo Dimitriadis and
Roxana Halbleib ()
Journal of Business & Economic Statistics, 2022, vol. 40, issue 3, 1346-1361
Abstract:
This article proposes a simple approach to estimate quantiles of daily financial returns directly from high-frequency data. We denote the resulting estimator as realized quantile (RQ) and use it to forecast tail risk measures, such as Value at Risk (VaR) and Expected Shortfall (ES). The RQ estimator is built on the assumption that financial logarithm prices are subordinated self-similar processes in intrinsic time. The intrinsic time dimension stochastically transforms the clock time in order to capture the real “heartbeat” of financial markets in accordance with their trading activity and/or riskiness. The self-similarity assumption allows to compute daily quantiles by simply scaling up their intraday counterparts, while the subordination technique can easily accommodate numerous empirical features of financial returns, such as volatility persistence and fat-tailedness. Our method, which is built on a flexible assumption, is simple to implement and exploits the rich information content of high-frequency data from another time perspective than the classical clock time. In a comprehensive empirical exercise, we show that our forecasts of VaR and ES are more accurate than the ones from a large set of up-to-date comparative models, for both, stocks and foreign exchange rates.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1929249 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:3:p:1346-1361
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1929249
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().