Efficient Estimation for Models With Nonlinear Heteroscedasticity
Zhanxiong Xu and
Zhibiao Zhao
Journal of Business & Economic Statistics, 2022, vol. 40, issue 4, 1498-1508
Abstract:
We study efficient estimation for models with nonlinear heteroscedasticity. In two-step quantile regression for heteroscedastic models, motivated by several undesirable issues caused by the preliminary estimator, we propose an efficient estimator by constrainedly weighting information across quantiles. When the weights are optimally chosen under certain constraints, the new estimator can simultaneously eliminate the effect of preliminary estimator as well as achieve good estimation efficiency. When compared to the Cramér-Rao lower bound, the relative efficiency loss of the new estimator has a conservative upper bound, regardless of the model design structure. The upper bound is close to zero for practical situations. In particular, the new estimator can asymptotically achieve the optimal Cramér-Rao lower bound if the noise has either a symmetric density or the asymmetric Laplace density. Monte Carlo studies show that the proposed method has substantial efficiency gain over existing ones. In an empirical application to GDP and inflation rate modeling, the proposed method has better prediction performance than existing methods.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1933991 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1498-1508
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1933991
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().