Inward and Outward Network Influence Analysis
Yujia Wu,
Wei Lan,
Tao Zou and
Chih-Ling Tsai
Journal of Business & Economic Statistics, 2022, vol. 40, issue 4, 1617-1628
Abstract:
Measuring heterogeneous influence across nodes in a network is critical in network analysis. This article proposes an inward and outward network influence (IONI) model to assess nodal heterogeneity. Specifically, we allow for two types of influence parameters; one measures the magnitude of influence that each node exerts on others (outward influence), while we introduce a new parameter to quantify the receptivity of each node to being influenced by others (inward influence). Accordingly, these two types of influence measures naturally classify all nodes into four quadrants (high inward and high outward, low inward and high outward, low inward and low outward, and high inward and low outward). To demonstrate our four-quadrant clustering method in practice, we apply the quasi-maximum likelihood approach to estimate the influence parameters, and we show the asymptotic properties of the resulting estimators. In addition, score tests are proposed to examine the homogeneity of the two types of influence parameters. To improve the accuracy of inferences about nodal influences, we introduce a Bayesian information criterion that selects the optimal influence model. The usefulness of the IONI model and the four-quadrant clustering method is illustrated via simulation studies and an empirical example involving customer segmentation.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1953509 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1617-1628
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1953509
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().