Interpretable Sparse Proximate Factors for Large Dimensions
Markus Pelger and
Ruoxuan Xiong
Journal of Business & Economic Statistics, 2022, vol. 40, issue 4, 1642-1664
Abstract:
This article proposes sparse and easy-to-interpret proximate factors to approximate statistical latent factors. Latent factors in a large-dimensional factor model can be estimated by principal component analysis (PCA), but are usually hard to interpret. We obtain proximate factors that are easier to interpret by shrinking the PCA factor weights and setting them to zero except for the largest absolute ones. We show that proximate factors constructed with only 5%–10% of the data are usually sufficient to almost perfectly replicate the population and PCA factors without actually assuming a sparse structure in the weights or loadings. Using extreme value theory we explain why sparse proximate factors can be substitutes for non-sparse PCA factors. We derive analytical asymptotic bounds for the correlation of appropriately rotated proximate factors with the population factors. These bounds provide guidance on how to construct the proximate factors. In simulations and empirical analyses of financial portfolio and macroeconomic data, we illustrate that sparse proximate factors are close substitutes for PCA factors with average correlations of around 97.5%, while being interpretable.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.1961786 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1642-1664
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.1961786
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().