EconPapers    
Economics at your fingertips  
 

Inference in Sparsity-Induced Weak Factor Models

Yoshimasa Uematsu and Takashi Yamagata

Journal of Business & Economic Statistics, 2022, vol. 41, issue 1, 126-139

Abstract: In this article, we consider statistical inference for high-dimensional approximate factor models. We posit a weak factor structure, in which the factor loading matrix can be sparse and the signal eigenvalues may diverge more slowly than the cross-sectional dimension, N. We propose a novel inferential procedure to decide whether each component of the factor loadings is zero or not, and prove that this controls the false discovery rate (FDR) below a preassigned level, while the power tends to unity. This “factor selection” procedure is primarily based on a debiased version of the sparse orthogonal factor regression (SOFAR) estimator; but is also applicable to the principal component (PC) estimator. After the factor selection, the resparsified SOFAR and sparsified PC estimators are proposed and their consistency is established. Finite sample evidence supports the theoretical results. We apply our method to the FRED-MD dataset of macroeconomic variables and the monthly firm-level excess returns which constitute the S&P 500 index. The results give very strong statistical evidence of sparse factor loadings under the identification restrictions and exhibit clear associations of factors and categories of the variables. Furthermore, our method uncovers a very weak but statistically significant factor in the residuals of Fama-French five factor regression.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2003203 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2022:i:1:p:126-139

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2021.2003203

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:126-139