Optimal Shrinkage-Based Portfolio Selection in High Dimensions
Taras Bodnar,
Yarema Okhrin and
Nestor Parolya
Journal of Business & Economic Statistics, 2022, vol. 41, issue 1, 140-156
Abstract:
In this article, we estimate the mean-variance portfolio in the high-dimensional case using the recent results from the theory of random matrices. We construct a linear shrinkage estimator which is distribution-free and is optimal in the sense of maximizing with probability 1 the asymptotic out-of-sample expected utility, that is, mean-variance objective function for different values of risk aversion coefficient which in particular leads to the maximization of the out-of-sample expected utility and to the minimization of the out-of-sample variance. One of the main features of our estimator is the inclusion of the estimation risk related to the sample mean vector into the high-dimensional portfolio optimization. The asymptotic properties of the new estimator are investigated when the number of assets p and the sample size n tend simultaneously to infinity such that p/n→c∈(0,+∞). The results are obtained under weak assumptions imposed on the distribution of the asset returns, namely the existence of the 4+ε moments is only required. Thereafter we perform numerical and empirical studies where the small- and large-sample behavior of the derived estimator is investigated. The suggested estimator shows significant improvements over the existent approaches including the nonlinear shrinkage estimator and the three-fund portfolio rule, especially when the portfolio dimension is larger than the sample size. Moreover, it is robust to deviations from normality.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2004897 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Optimal shrinkage-based portfolio selection in high dimensions (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2022:i:1:p:140-156
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.2004897
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().