Panel Stochastic Frontier Model With Endogenous Inputs and Correlated Random Components
Hung-pin Lai and
Subal Kumbhakar
Journal of Business & Economic Statistics, 2022, vol. 41, issue 1, 80-96
Abstract:
In this article, we consider a panel stochastic frontier model in which the composite error term εit has four components, that is, εit=τi−ηi+vit−uit, where ηi and uit are persistent and transient inefficiency components, τi consists of the random firm effects and vit is the random noise. Two distinguishing features of the proposed model are (i) the inputs are allowed to be correlated with one or more of the error components in the production function; (ii) time-invariant and time-varying components, that is, (τi−ηi) and (vit−uit), are allowed to be correlated. To keep the formulation general, we do not specify whether this correlation comes from the correlations between (i) ηi and uit, (ii) τi and uit, (iii) τi and vit, (iv) ηi and vit, or some other combination of them. Further, we also consider the case when the correlation in the composite error arises from the time dependence of εit. To estimate the model parameters and predict (in)efficiency, we propose a two-step procedure. In the first step, either the within or the first difference transformation that eliminates the time-invariant components is proposed. We then use either the 2SLS or the GMM approach to obtain unbiased and consistent estimators of the parameters in the frontier function, except for the intercept. In the second step, the maximum simulated likelihood method is used to estimate the parameters associated with the distributions of τi and vit, ηi and uit as well as the intercept. The copula approach is used in this step to model the dependence between the time-varying and time-invariant components. Formulas to predict transient and persistent (in)efficiency are also derived. Finally, results from both simulated and real data are provided.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2001341 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2022:i:1:p:80-96
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.2001341
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().