EconPapers    
Economics at your fingertips  
 

Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective

Laura Liu

Journal of Business & Economic Statistics, 2023, vol. 41, issue 2, 349-363

Abstract: This article constructs individual-specific density forecasts for a panel of firms or households using a dynamic linear model with common and heterogeneous coefficients as well as cross-sectional heteroscedasticity. The panel considered in this article features a large cross-sectional dimension N but short time series T. Due to the short T, traditional methods have difficulty in disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the heterogeneous parameters. To tackle this problem, I assume that there is an underlying distribution of heterogeneous parameters, model this distribution nonparametrically allowing for correlation between heterogeneous parameters and initial conditions as well as individual-specific regressors, and then estimate this distribution by combining information from the whole panel. Theoretically, I prove that in cross-sectional homoscedastic cases, both the estimated common parameters and the estimated distribution of the heterogeneous parameters achieve posterior consistency, and that the density forecasts asymptotically converge to the oracle forecast. Methodologically, I develop a simulation-based posterior sampling algorithm specifically addressing the nonparametric density estimation of unobserved heterogeneous parameters. Monte Carlo simulations and an empirical application to young firm dynamics demonstrate improvements in density forecasts relative to alternative approaches.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2021922 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:2:p:349-363

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2021.2021922

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:349-363