On Testing Equal Conditional Predictive Ability Under Measurement Error
Yannick Hoga and
Timo Dimitriadis
Journal of Business & Economic Statistics, 2023, vol. 41, issue 2, 364-376
Abstract:
Loss functions are widely used to compare several competing forecasts. However, forecast comparisons are often based on mismeasured proxy variables for the true target. We introduce the concept of exact robustness to measurement error for loss functions and fully characterize this class of loss functions as the Bregman class. Hence, only conditional mean forecasts can be evaluated exactly robustly. For such exactly robust loss functions, forecast loss differences are on average unaffected by the use of proxy variables and, thus, inference on conditional predictive ability can be carried out as usual. Moreover, we show that more precise proxies give predictive ability tests higher power in discriminating between competing forecasts. Simulations illustrate the different behavior of exactly robust and nonrobust loss functions. An empirical application to U.S. GDP growth rates demonstrates the nonrobustness of quantile forecasts. It also shows that it is easier to discriminate between mean forecasts issued at different horizons if a better proxy for GDP growth is used.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2021923 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:2:p:364-376
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.2021923
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().