Multi-Threshold Structural Equation Model
Jingli Wang and
Jialiang Li
Journal of Business & Economic Statistics, 2023, vol. 41, issue 2, 377-387
Abstract:
In this article, we consider the instrumental variable estimation for causal regression parameters with multiple unknown structural changes across subpopulations. We propose a multiple change point detection method to determine the number of thresholds and estimate the threshold locations in the two-stage least square procedure. After identifying the estimated threshold locations, we use the Wald method to estimate the parameters of interest, that is, the regression coefficients of the endogenous variable. Based on some technical assumptions, we carefully establish the consistency of estimated parameters and the asymptotic normality of causal coefficients. Simulation studies are included to examine the performance of the proposed method. Finally, our method is illustrated via an application of the Philippine farm households data for which some new findings are discovered.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2021.2023553 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:2:p:377-387
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2021.2023553
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().