Skilled Mutual Fund Selection: False Discovery Control Under Dependence
Lijia Wang,
Xu Han and
Xin Tong
Journal of Business & Economic Statistics, 2023, vol. 41, issue 2, 578-592
Abstract:
Selecting skilled mutual funds through the multiple testing framework has received increasing attention from finance researchers and statisticians. The intercept α of Carhart four-factor model is commonly used to measure the true performance of mutual funds, and positive α’s are considered as skilled. We observe that the standardized ordinary least-square estimates of α’s across the funds possess strong dependence and nonnormality structures, indicating that the conventional multiple testing methods are inadequate for selecting the skilled funds. We start from a decision theoretical perspective, and propose an optimal multiple testing procedure to minimize a combination of false discovery rate and false nondiscovery rate. Our proposed testing procedure is constructed based on the probability of each fund not being skilled conditional on the information across all of the funds in our study. To model the distribution of the information used for the testing procedure, we consider a mixture model under dependence and propose a new method called “approximate empirical Bayes” to fit the parameters. Empirical studies show that our selected skilled funds have superior long-term and short-term performance, for example, our selection strongly outperforms the S&P 500 index during the same period.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2044337 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:2:p:578-592
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2022.2044337
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().