Bootstrapping Two-Stage Quasi-Maximum Likelihood Estimators of Time Series Models
Sílvia Gonçalves,
Ulrich Hounyo,
Andrew Patton and
Kevin Sheppard
Journal of Business & Economic Statistics, 2023, vol. 41, issue 3, 683-694
Abstract:
This article provides results on the validity of bootstrap inference methods for two-stage quasi-maximum likelihood estimation involving time series data, such as those used for multivariate volatility models or copula-based models. Existing approaches require the researcher to compute and combine many first- and second-order derivatives, which can be difficult to do and is susceptible to error. Bootstrap methods are simpler to apply, allowing the substitution of capital (CPU cycles) for labor (keeping track of derivatives). We show the consistency of the bootstrap distribution and consistency of bootstrap variance estimators, thereby justifying the use of bootstrap percentile intervals and bootstrap standard errors.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2058949 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:3:p:683-694
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2022.2058949
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().