Detection of Multiple Structural Breaks in Large Covariance Matrices
Yu-Ning Li,
Degui Li and
Piotr Fryzlewicz
Journal of Business & Economic Statistics, 2023, vol. 41, issue 3, 846-861
Abstract:
This article studies multiple structural breaks in large contemporaneous covariance matrices of high-dimensional time series satisfying an approximate factor model. The breaks in the second-order moment structure of the common components are due to sudden changes in either factor loadings or covariance of latent factors, requiring appropriate transformation of the factor models to facilitate estimation of the (transformed) common factors and factor loadings via the classical principal component analysis. With the estimated factors and idiosyncratic errors, an easy-to-implement CUSUM-based detection technique is introduced to consistently estimate the location and number of breaks and correctly identify whether they originate in the common or idiosyncratic error components. The algorithms of Wild Binary Segmentation for Covariance (WBS-Cov) and Wild Sparsified Binary Segmentation for Covariance (WSBS-Cov) are used to estimate breaks in the common and idiosyncratic error components, respectively. Under some technical conditions, the asymptotic properties of the proposed methodology are derived with near-optimal rates (up to a logarithmic factor) achieved for the estimated breaks. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the developed method and its comparison with other existing approaches. We finally apply our method to study the contemporaneous covariance structure of daily returns of S&P 500 constituents and identify a few breaks including those occurring during the 2007–2008 financial crisis and the recent coronavirus (COVID-19) outbreak. An R package “BSCOV” is provided to implement the proposed algorithms.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2076686 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Detection of multiple structural breaks in large covariance matrices (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:3:p:846-861
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2022.2076686
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().