EconPapers    
Economics at your fingertips  
 

Fast Variational Bayes Methods for Multinomial Probit Models

Rubén Loaiza-Maya and Didier Nibbering

Journal of Business & Economic Statistics, 2023, vol. 41, issue 4, 1352-1363

Abstract: The multinomial probit model is often used to analyze choice behavior. However, estimation with existing Markov chain Monte Carlo (MCMC) methods is computationally costly, which limits its applicability to large choice datasets. This article proposes a variational Bayes method that is accurate and fast, even when a large number of choice alternatives and observations are considered. Variational methods usually require an analytical expression for the unnormalized posterior density and an adequate choice of variational family. Both are challenging to specify in a multinomial probit, which has a posterior that requires identifying restrictions and is augmented with a large set of latent utilities. We employ a spherical transformation on the covariance matrix of the latent utilities to construct an unnormalized augmented posterior that identifies the parameters, and use the conditional posterior of the latent utilities as part of the variational family. The proposed method is faster than MCMC, and can be made scalable to both a large number of choice alternatives and a large number of observations. The accuracy and scalability of our method is illustrated in numerical experiments and real purchase data with one million observations.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2139267 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:41:y:2023:i:4:p:1352-1363

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2022.2139267

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:41:y:2023:i:4:p:1352-1363