Low Frequency Cointegrating Regression with Local to Unity Regressors and Unknown Form of Serial Dependence
Jungbin Hwang and
Gonzalo Valdés
Journal of Business & Economic Statistics, 2024, vol. 42, issue 1, 160-173
Abstract:
This article develops new t and F tests in a low-frequency transformed triangular cointegrating regression when one may not be certain that the economic variables are exact unit root processes. We first show that the low-frequency transformed and augmented OLS (TA-OLS) method exhibits an asymptotic bias term in its limiting distribution. As a result, the test for the cointegration vector can have substantially large size distortion, even with minor deviations from the unit root regressors. To correct the asymptotic bias of the TA-OLS statistics for the cointegration vector, we develop modified TA-OLS statistics that adjust the bias and take account of the estimation uncertainty of the long-run endogeneity arising from the bias correction. Based on the modified test statistics, we provide Bonferroni-based tests of the cointegration vector using standard t and F critical values. Monte Carlo results show that our approach has the correct size and reasonable power for a wide range of local-to-unity parameters. Additionally, our method has advantages over the IVX approach when the serial dependence and the long-run endogeneity in the cointegration system are important.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2023.2166513 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:1:p:160-173
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2023.2166513
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().