Graphical Assistant Grouped Network Autoregression Model: A Bayesian Nonparametric Recourse
Yimeng Ren,
Xuening Zhu,
Xiaoling Lu and
Guanyu Hu
Journal of Business & Economic Statistics, 2024, vol. 42, issue 1, 49-63
Abstract:
Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this article, we develop a novel Bayesian grouped network autoregression model, which can simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under the framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2143784 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:1:p:49-63
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2022.2143784
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().