Backtesting Systemic Risk Forecasts Using Multi-Objective Elicitability
Tobias Fissler and
Yannick Hoga
Journal of Business & Economic Statistics, 2024, vol. 42, issue 2, 485-498
Abstract:
Systemic risk measures such as CoVaR, CoES, and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarized as “backtesting,” impossible. The novel notion of multi-objective elicitability solves this problem by relying on bivariate scores equipped with the lexicographic order. Based on this concept, we propose Diebold–Mariano type tests with suitable bivariate scores to compare systemic risk forecasts. We illustrate the test decisions by an easy-to-apply traffic-light approach. Finally, we apply our traffic-light approach to DAX 30 and S&P 500 returns, and infer some recommendations for regulators.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2023.2200514 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:2:p:485-498
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2023.2200514
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().