EconPapers    
Economics at your fingertips  
 

Neural Networks for Partially Linear Quantile Regression

Qixian Zhong and Jane-Ling Wang

Journal of Business & Economic Statistics, 2024, vol. 42, issue 2, 603-614

Abstract: Deep learning has enjoyed tremendous success in a variety of applications but its application to quantile regression remains scarce. A major advantage of the deep learning approach is its flexibility to model complex data in a more parsimonious way than nonparametric smoothing methods. However, while deep learning brought breakthroughs in prediction, it is not well suited for statistical inference due to its black box nature. In this article, we leverage the advantages of deep learning and apply it to quantile regression where the goal is to produce interpretable results and perform statistical inference. We achieve this by adopting a semiparametric approach based on the partially linear quantile regression model, where covariates of primary interest for statistical inference are modeled linearly and all other covariates are modeled nonparametrically by means of a deep neural network. In addition to the new methodology, we provide theoretical justification for the proposed model by establishing the root-n consistency and asymptotically normality of the parametric coefficient estimator and the minimax optimal convergence rate of the neural nonparametric function estimator. Across several simulated and real data examples, the proposed model empirically produces superior estimates and more accurate predictions than various alternative approaches.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2023.2208183 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:2:p:603-614

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2023.2208183

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:42:y:2024:i:2:p:603-614