Unconditional Quantile Regression for Streaming Datasets
Rong Jiang and
Keming Yu
Journal of Business & Economic Statistics, 2024, vol. 42, issue 4, 1143-1154
Abstract:
The Unconditional Quantile Regression (UQR) method, initially introduced by Firpo et al. has gained significant traction as a popular approach for modeling and analyzing data. However, much like Conditional Quantile Regression (CQR), UQR encounters computational challenges when it comes to obtaining parameter estimates for streaming datasets. This is attributed to the involvement of unknown parameters in the logistic regression loss function used in UQR, which presents obstacles in both computational execution and theoretical development. To address this, we present a novel approach involving smoothing logistic regression estimation. Subsequently, we propose a renewable estimator tailored for UQR with streaming data, relying exclusively on current data and summary statistics derived from historical data. Theoretically, our proposed estimators exhibit equivalent asymptotic properties to the standard version computed directly on the entire dataset, without any additional constraints. Both simulations and real data analysis are conducted to illustrate the finite sample performance of the proposed methods.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2023.2293162 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:4:p:1143-1154
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2023.2293162
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().