EconPapers    
Economics at your fingertips  
 

Should Humans Lie to Machines? The Incentive Compatibility of Lasso and GLM Structured Sparsity Estimators

Mehmet Caner and Kfir Eliaz

Journal of Business & Economic Statistics, 2024, vol. 42, issue 4, 1379-1388

Abstract: We consider situations where a user feeds her attributes to a machine learning method that tries to predict her best option based on a random sample of other users. The predictor is incentive-compatible if the user has no incentive to misreport her covariates. Focusing on the popular Lasso estimation technique, we borrow tools from high-dimensional statistics to characterize sufficient conditions that ensure that Lasso is incentive compatible in the asymptotic case. We extend our results to a new nonlinear machine learning technique, Generalized Linear Model Structured Sparsity estimators. Our results show that incentive compatibility is achieved if the tuning parameter is kept above some threshold in the case of asymptotics.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2024.2316102 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:4:p:1379-1388

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2024.2316102

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:42:y:2024:i:4:p:1379-1388