On two asymptotic normal distributions for the generalized wilks lambda statistic
Coelho Carlos A
Communications in Statistics - Theory and Methods, 2000, vol. 29, issue 7, 1465-1486
Abstract:
In this paper we.present a Normal asymptotic distribution for the logarithm of the generalized Wilks Lambda statistic based on an asymptotic distribution for the determinant of a Wishart matrix. This distribution is obtained through the combined use of Taylor expansions of random variables whose exponentials have chi-square distributions and the Lindeberg-Feller version of the Central Limit Theorem, Another asymptotic Normal distribution for the logarithm of the generalized Wilks Lambda statistic for the case when at most one of the sets has an odd number of variables is derived directly from the exact distribution. Both distributions are non-degenerate and non-singular. The first Normal distribution compares favorably with other known approximations and asymptotic distributions namely for large numbers of variables and small sample sizes, while the second Normal distribution, which has a more restricted application, compares in most cases highly favorably with other known asymptotic distributions and approximations. Finally, a method to compute approximate quantiles which lay very close and converge steadily to the exact ones is presented.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610920008832557 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:29:y:2000:i:7:p:1465-1486
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610920008832557
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().