EconPapers    
Economics at your fingertips  
 

Mixed Correlated Bivariate Ordinal and Negative Binomial Longitudinal Responses with Nonignorable Missing Values

E. Bahrami Samani and M. Ganjali

Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 13, 2659-2673

Abstract: Regression models with random effects are proposed for joint analysis of negative binomial and ordinal longitudinal data with nonignorable missing values under fully parametric framework. The presented model simultaneously considers a multivariate probit regression model for the missing mechanisms, which provides the ability of examining the missing data assumptions and a multivariate mixed model for the responses. Random effects are used to take into account the correlation between longitudinal responses of the same individual. A full likelihood-based approach that allows yielding maximum likelihood estimates of the model parameters is used. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the ordinal response of osteoporosis of the spine and negative binomial response is the number of joint damage. A sensitivity of the results to the assumptions is also investigated. The effect of some covariates on all responses are investigated simultaneously.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.681537 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:13:p:2659-2673

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2012.681537

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:43:y:2014:i:13:p:2659-2673