Identification of Longitudinal Biomarkers in Survival Analysis for Competing Risks Data
Feng-Shou Ko
Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 16, 3329-3342
Abstract:
In recent years, joint analysis of longitudinal measurements and survival data has received much attention. However, previous work has primarily focused on a single failure type for the event time. In this article, we consider joint modeling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint so we fit a cause-specific hazards sub-model to allow for competing risks, with a separate latent association between longitudinal measurements and each cause of failure. Besides, previous work does not focus on the hypothesis to test a separate latent association between longitudinal measurements and each cause of failure. In this article, we derive a score test to identify longitudinal biomarkers or surrogates for a time to event outcome in competing risks data. With a carefully chosen definition of complete data, the maximum likelihood estimation of the cause-specific hazard functions is performed via an EM algorithm. We extend this work and allow random effects to be present in both the longitudinal biomarker and underlying survival function. The random effects in the biomarker are introduced via an explicit term while the random effect in the underlying survival function is introduced by the inclusion of frailty into the model.We use simulations to explore how the number of individuals, the number of time points per individual and the functional form of the random effects from the longitudinal biomarkers considering heterogeneous baseline hazards in individuals influence the power to detect the association of a longitudinal biomarker and the survival time.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.716135 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:16:p:3329-3342
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.716135
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().