A Consistent Method of Estimation For The Three-Parameter Gamma Distribution
Hideki Nagatsuka,
N. Balakrishnan and
Toshinari Kamakura
Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 18, 3905-3926
Abstract:
For the three-parameter gamma distribution, it is known that the method of moments as well as the maximum likelihood method have difficulties such as non-existence in some range of the parameters, convergence problems, and large variability. For this reason, in this article, we propose a method of estimation based on a transformation involving order statistics from the sample. In this method, the estimates always exist uniquely over the entire parameter space, and the estimators also have consistency over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.714035 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:18:p:3905-3926
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.714035
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().