A Further Study of Predictions in Linear Mixed Models
Hu Yang,
Huiliang Ye and
Kai Xue
Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 20, 4241-4252
Abstract:
This article is concerned with the prediction problems in linear mixed models (LMM). Both biased predictors and restricted predictors are introduced. It was found that the mean square error matrix (MSEM) of a predictor strongly depends on the MSEM of corresponding estimator of the fixed effects and precise formulas are obtained. As an application, we propose three new predictors to improve the best linear unbiased predictor (BLUP). The performance of the new predictors can be examined easily with the help of vast literature on the linear regression models (LM). We also illustrate our findings with a Monte Carlo simulation and a numerical example.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.725497 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:20:p:4241-4252
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.725497
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().