Robust Estimation of Parameters in Simple Linear Profiles Using M-Estimators
Mohsen Ebadi and
Hamid Shahriari
Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 20, 4308-4323
Abstract:
In many situations, the quality of a process or product may be better characterized and summarized by a relationship between the response variable and one or more explanatory variables. Parameter estimation is the first step in constructing control charts. Outliers may hamper proper classical estimators and lead to incorrect conclusions. To remedy the problem of outliers, robust methods have been developed recently. In this article, a robust method is introduced for estimating the parameters of simple linear profiles. Two weight functions, Huber and Bisquare, are applied in the estimation algorithm. In addition, a method for robust estimation of the error terms variance is proposed. Simulation studies are done to investigate and evaluate the performance of the proposed estimator, as well as the classical one, in the presence and absence of outliers under different scenarios by the means of MSE criterion. The results reveal that the robust estimators proposed in this research perform as well as classical estimators in the absence of outliers and even considerably better when outliers exist. The maximum value of variance estimate in one scenario obtained from classical estimator is 10.9, while this value is 1.66 and 1.27 from proposed robust estimators when its actual value is 1.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.721914 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:20:p:4308-4323
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.721914
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().