A Class of Goodness-of-fit Tests Based on Transformation
Simos G. Meintanis,
Ma Dolores JimÉnez Gamero and
V. Alba-fernÁndez
Communications in Statistics - Theory and Methods, 2014, vol. 43, issue 8, 1708-1735
Abstract:
There is an increasing number of goodness-of-fit tests whose test statistics measure deviations between the empirical characteristic function and an estimated characteristic function of the distribution in the null hypothesis. With the aim of overcoming certain computational difficulties with the calculation of some of these test statistics, a transformation of the data is considered. To apply such a transformation, the data are assumed to be continuous with arbitrary dimension, but we also provide a modification for discrete random vectors. Practical considerations leading to analytic formulas for the test statistics are studied, as well as theoretical properties such as the asymptotic null distribution, validity of the corresponding bootstrap approximation, and consistency of the test against fixed alternatives. Five applications are provided in order to illustrate the theory. These applications also include numerical comparison with other existing techniques for testing goodness-of-fit.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.673673 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:43:y:2014:i:8:p:1708-1735
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.673673
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().