The Poisson Generalized Linear Failure Rate Model
Gauss M. Cordeiro,
Edwin Ortega and
Artur Lemonte
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 10, 2037-2058
Abstract:
We formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution, and the time to this event has the generalized linear failure rate distribution. A new distribution to analyze lifetime data is defined from the proposed cure rate model, and its quantile function as well as a general expansion for the moments is derived. We estimate the parameters of the model with cure rate in the presence of covariates for censored observations using maximum likelihood and derive the observed information matrix. We obtain the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. The usefulness of the proposed cure rate survival model is illustrated in an application to real data.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.771749 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2037-2058
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.771749
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().