EconPapers    
Economics at your fingertips  
 

An Investigation of Quantile Function Estimators Relative to Quantile Confidence Interval Coverage

Lai Wei, Dongliang Wang and Alan D. Hutson

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 10, 2107-2135

Abstract: In this article, we investigate the limitations of traditional quantile function estimators and introduce a new class of quantile function estimators, namely, the semi-parametric tail-extrapolated quantile estimators, which has excellent performance for estimating the extreme tails with finite sample sizes. The smoothed bootstrap and direct density estimation via the characteristic function methods are developed for the estimation of confidence intervals. Through a comprehensive simulation study to compare the confidence interval estimations of various quantile estimators, we discuss the preferred quantile estimator in conjunction with the confidence interval estimation method to use under different circumstances. Data examples are given to illustrate the superiority of the semi-parametric tail-extrapolated quantile estimators. The new class of quantile estimators is obtained by slight modification of traditional quantile estimators, and therefore, should be specifically appealing to researchers in estimating the extreme tails.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.775304 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2107-2135

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.775304

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2107-2135