Stochastic Loss Reserving in Discrete Time: Individual vs. Aggregate Data Models
Jinlong Huang,
Chunjuan Qiu and
Xianyi Wu
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 10, 2180-2206
Abstract:
In this paper, a stochastic individual data model is considered. It accommodates occurrence times, reporting, and settlement delays and severity of every individual claims. This formulation gives rise to a model for the corresponding aggregate data under which classical chain ladder and Bornhuetter–Ferguson algorithms apply. A claims reserving algorithm is developed under this individual data model and comparisons of its performance with chain ladder and Bornhuetter–Ferguson algorithms are made to reveal the effects of using individual data to instead aggregate data. The research findings indicate a remarkable promotion in accuracy of loss reserving, especially when the claims amounts are not too heavy-tailed.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.976473 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2180-2206
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.976473
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().