EconPapers    
Economics at your fingertips  
 

A Compressive Sensing Based Analysis of Anomalies in Generalized Linear Models

Brian Moore and Balasubramaniam Natarajan

Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 13, 2705-2719

Abstract: In this article, we present a compressive sensing based framework for generalized linear model regression that employs a two-component noise model and convex optimization techniques to simultaneously detect outliers and determine optimally sparse representations of noisy data from arbitrary sets of basis functions. We then extend our model to include model order reduction capabilities that can uncover inherent sparsity in regression coefficients and achieve simple, superior fits. Second, we use the mixed ℓ2/ℓ1 norm to develop another model that can efficiently uncover block-sparsity in regression coefficients. By performing model order reduction over all independent variables and basis functions, our algorithms successfully deemphasize the effect of independent variables that become uncorrelated with dependent variables. This desirable property has various applications in real-time anomaly detection, such as faulty sensor detection and sensor jamming in wireless sensor networks. After developing our framework and inheriting a stable recovery theorem from compressive sensing theory, we present two simulation studies on sparse or block-sparse problems that demonstrate the superior performance of our algorithms with respect to (1) classic outlier-invariant regression techniques like least absolute value and iteratively reweighted least-squares and (2) classic sparse-regularized regression techniques like LASSO.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.781641 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:13:p:2705-2719

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.781641

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:44:y:2015:i:13:p:2705-2719