Threshold Vector Arma Models
Marcella Niglio and
Cosimo Damiano Vitale
Communications in Statistics - Theory and Methods, 2015, vol. 44, issue 14, 2911-2923
Abstract:
In this article, we propose the threshold vector autoregressive moving average model (TVARMA). It is a multivariate nonlinear time series model characterized by two or more regimes that follow a vector ARMA structure and where the switching among them is regulated by a latent variable. The TVARMA model represents a generalization of some nonlinear models proposed in the literature and shows interesting features that are explored. The condition for the strong and weak stationarity of the TVARMA model are presented and the moments up to order two of the process are derived.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.814785 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:44:y:2015:i:14:p:2911-2923
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2013.814785
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().